May 4, 2022 Austin G. Oswald

Comparing Categorical Variables (Chi-Square)

Agenda

- Check in
- History of statistics
- Last week's lab review
- Overview of chi-square
- Computer lab

Image by Artem Bryzgalov via Unsplash, shared under the Unsplash license.

Violent History of Statistical Reasoning

Francis Galton (1822-1911)

- Coined the term eugenics
- Developed regression and correlation techniques
- Motivations: racial improvement

Karl Pearson (1857-1936)

- Improved upon concepts of regression and correlation
- Developed Chi-Square test
- Motivations: elitism, racial improvement

RA Fisher (1890-1962)

- Later generation of eugenics
- Developed Fisher's exact test and Analysis of Variance (ANOVA)
- Motivation: insisting on racial difference

Another History?

William Sealy Gosset (1876-1937)

- Chemist and Head Experimental Brewer of Guinness
- Published under the pseudonym "Student"
- Developed the t-test
- Motivation: Better beer

T-tests (re)Explained

- Comparing the mean (average) between two groups
- Works with continuous variables
 - Comparing two groups on mean scores on a scale; mean ages; mean hours spent in unpaid labor

Overview of p-values

A p value is used in <u>hypothesis testing</u> to help you <u>support or reject the null hypothesis</u> (no difference between the two groups). The smaller the p-value, the stronger the evidence that you should reject the null hypothesis.

There's a significant (not due to chance) difference between the groups if....

- P < 0.05 *
- P < 0.01 **
- P < 0.001***

Chi-square $(\chi 2)$ allows us to determine whether the differences in proportions across groups are significantly different.

Pearson's Chi-Square Test

- Use to see whether there's a relationship between two categorical variables
 - Compares the frequencies/proportions you observe in certain categories to the frequencies you might expect to get in those categories by chance
- Testing whether the observed counts are significantly different from the expected counts OR if the proportions are significantly different between two groups

Potential Research Questions

Suppose we had two groups of people: younger adults and older adults We also have a variable called depression diagnosis

Yes=1 No=0

Do the older adults have a significantly larger proportion of depression than the younger ones? Suppose we had two groups of people: cigender and trans/gender expansive We also have a variable called poverty level Living blow the poverty threshold=0 Living at or above the poverty threshold=1

Is there a significantly higher proportion of poverty among trans and gender expansive people than cisgender people?

Assumptions of Pearson's Chi-Square

Fisher's exact test \rightarrow

Non-parametric test

Independence of data (no repeated measures)

No less than 5 in any cell (expected frequency) – chi-square distribution

Corrections for Pearson's Chi-Square

Fisher's Exact

Use when a cell has less than five frequencies

Yates' Correction

 Use when working with a 2x2 table (two independent/dependent variables) **Class Activity**

Is the subjective experience of being an MSW intern different for community organizing and clinical students regarding perceived level of support and overall experience?

 Practice Method Clinical=1 Independent • CO=2 Variable • PREP; JOB OFF; INT_JOB ; Dependent ALT INT Variable(s)

Check out results from t-tests from our class project last year